A JOYFUL CLASSROOM LEARNING SYSTEM WITH ROBOT LEARNING COMPANION FOR CHILDREN TO LEARN MATHEMATICS MULTIPLICATION

 

ABSTRACT

This research demonstrates the design of a Joyful Classroom Learning System (JCLS) with flexible, mobile and joyful features. The theoretical foundations of this research include the experiential learning theory, constructivist learning theory and joyful learning. The developed JCLS consists of the robot learning companion (RLC), sensing input device, mobile computation unit, mobile display device, wireless local network and operating software. The aim of this research is to design and evaluate the JCLS, which is implemented by using robot and RFID technologies. The developed JCLS system has been applied in real world for supporting children to learn mathematical multiplication. Both pilot experiment and formal experiment were conducted and the results showed that the JCLS can provide learners with more opportunities for hands-on exercises and deepening their impressions about the learning contents. Having many opportunities for hands-on exercises, learners can have more thinking time for knowledge construction. Using robot to design RLC can simultaneously increase learners’ motivations and offer a more joyful perception to learners during the learning process. On the other hand, the JCLS can support instructors to immediately acquire the learning statuses of every learner for adjusting his/her in-class instructional strategy and giving after-school assistances.