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ABSTRACT 
Students need to achieve automaticity in learning mathematics without sacrificing conceptual understanding of 
the algorithms that are essential in being successful in algebra and problem solving, as well as in science. This 
research investigated the relationship between science-contextualized problems and computational fluency by 
testing an instructional method that was implemented as a non-traditional drill exercise. The study employed a 
quantitative analysis of pre- and post-test scores of Turkish middle and high school students after two 
interventions. The questions addressed were: Do the science-contextualized drill practices (SCP) improve 
students’ computational fluency better than traditional drill practices (TP)? Is there any statistical significance 
between middle and high school students in terms of their benefit from SCP? This study showed that science-
contextualized drill exercises produced higher gains for both middle and high school students’ computational 
fluencies than the traditional context-free drill exercises. 
Keywords: computational fluency, integration, mathematics education 
 
INTRODUCTION 
Mathematics conceptualization was the primary focus of the Principles and Standards for School Mathematics 
(PSSM) document which was developed and published in 2000 by the National Council of Teachers of 
Mathematics (NCTM). While it was an improvement over the standards of 1989 and 1995 that may have 
inadvertently given the impression that computation should be de-emphasized (Hartocollis, 2000), in fact, 
improving automaticity with computational facts and mathematical precision was presented as an integral part of 
conceptual mathematics learning in PSSM (Ferrini-Mundy, 2000). In order to strengthen its position on this 
matter, NCTM issued a document called Curriculum Focal Points (CFP) in 2006 that listed the most critical 
mathematical topics to be taught at schools. As a result, CFP was emphasizing the importance of basic arithmetic 
skills in lower and middle grades stronger than ever.  
 
However, CFP was perceived by the media as an admission that the PSSM had originally recommended reduced 
instruction in basic arithmetic facts (Lewin, 2006). NCTM responded to the image displayed by the mainstream 
media and concluded that CFP fully supported the PSSM and “it is in no way a reversal of the NCTM’s long-
standing position on teaching students to learn critical foundational topics (e.g. multiplication) with conceptual 
understanding” (National Council of Teachers of Mathematics [NCTM], 2006, ¶ 9).  
 
Today, NCTM’s position on teaching students critical foundational topics is clearer: Teaching mathematics 
should be based on conceptual understanding with an emphasis on computational fluency, and “computational 
fluency should develop in tandem with understanding of the role and meaning of arithmetic operations in 
number systems” (NCTM, 2000, p. 32). Still, by not providing examples of concrete instructional methods, FCP 
did not diminish the apprehensions of those who has been worried about math wars (Van de Walle, 1999), thus 
teachers are left to fix on between two sides of the war or to segregate their lessons into conceptual and 
computational sections (Galley & Manzo, 2004). Even more to worry is the speculation that FCP might be 
interpreted by educators as if it encourages computational fluency (including algorithmic precision) to be taught 
only within the domain of arithmetic, and thus students would not need to practice it after elementary grades. A 
similar topic of discussion was explained in Howe’s (1998) critic over decreased attention tables in standards 
document, and how it was often interpreted as no attention to certain topics of mathematics. 
 
In correlation with NCTM’s position, the question of how to build computational proficiency was paramount and 
several studies have shown that rote, behaviorist traditional practice was not an effective means for developing 
computational fluency (Davis, 1984; Ginsburg, 1997; Webb, 1991). Thus, the driving question in this study was 
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to understand the relationship between science-contextualized problems, and computational fluency by testing an 
instructional method that was implemented as a non-traditional drill exercise — in the sense of a creative and 
interdisciplinary approach — to foster computational fluency. 
 
The questions addressed in this study were: 

1) Do the science-contextualized drill practices (SCP) improve students’ computational fluency better than 
traditional drill practices (TP)? 

2) Is there any statistical significance between middle and high school students in terms of their benefit 
from SCP? 

  
THEORETICAL FRAMEWORK 
A Philosophical Debate on Algorithms 
The composition of mathematics is a controversial issue; however people from all disciplines agree that 
arithmetic, algebra, problem solving and geometry are the essentials of mathematical thinking. Almost all 
advanced applications of mathematics rely on good knowledge of arithmetic that makes the conceptual 
understanding of the latter topics possible. Despite the consensus between the two sides of the math wars on the 
importance of arithmetic, there has still been an on-going debate on the role of algorithmic computations in 
teaching arithmetic. Although some claim this debate is a philosophical one (Davison & Mitchell, 2008), there 
are philosophers who believe it is a pedagogical issue. For example, the ideas of 20th century mathematician and 
philosopher A. N. Whitehead who believed education should attain automaticity so that the mind is free to learn 
higher-level problems (Ocken, 2007) are noteworthy. Whitehead diverged from the notion that students are 
obliged to always think about what they are doing. He believed thought should come with a critical 
consciousness, which results from attention and elimination of the unrelated (Whitehead, 1938). Whitehead’s 
automaticity is better-responded in second language learning (McLaughlin,1979), and is defined as the point at 
which a person no longer has to think about the rules of pronunciation, grammar, or the syntax 
(Brown & Campbell, 2002). Yet, Whitehead considered life as an organic entity and according to him learning 
should be beauty-centered and holistic (Ernest, 2000), and mathematics is not to train the mind for future 
challenges but should work for the moment (Whitehead, 1929). Therefore, Whitehead’s philosophy suggested 
that emphasizing algorithms as a way to achieve automaticity in learning mathematics does not sacrifice 
conceptual understanding (Wu, 1999) or dispute scientific constructivism in the sense that it is self-dependence 
on individual cognitive abilities to understand, recognize, and create. Because, according to Whitehead, 
education is “…the acquisition of the art of the utilization of knowledge” (1929, p.4). 
 
Clearly, when the focus is on pedagogy rather than philosophical differences, it is easier to reach a consensus on 
the role of algorithms in mathematics teaching. Whitehead’s views might be helpful in achieving what Dr. Ball 
tried to do by bringing concrete examples of instruction so that educators may discuss two sides of the story and 
develop their own styles in achieving computational fluency through effective instructional strategies according 
to their students’ individual needs (Galley & Manzo, 2004). 
 
The consensus on the role of algorithms in mathematics education suffered from extremist approaches in the 
past. In response to proclamations that technology changed the very nature of mathematics by making 
calculations easier (NCTM, 1989), and to articles such as Leinwand’s  It's time to abandon computational 
algorithms (1994), a committee of the American Mathematicians Society (AMS) had to remind that the 
algorithms of arithmetic form the basis of more advanced mathematics topics such as the concept of real 
numbers and algebra of polynomials (Howe, 1998). On the other edge, there was the back to basics curriculum 
in the U.S. which “…focused largely on skills and procedures” (Schonfeld, 2004, p. 258) and to which NCTM 
reacted with its standards approach in 1980’s. 
 
The Definition of Computational Fluency 
Computational fluency has been misunderstood by many as the set of rules of arithmetic; similar to problem 
solving which was once interpreted as students solving simple word problems so that algorithmic calculations 
could be avoided (Schonfeld, 2004). The lack of a common definition caused researchers to use concepts such as 
algorithmic thinking, algorithms, computation, arithmetic, etc. interchangeably, and even sometimes incorrectly 
(Howe, 1998). 
 
Fuchs et al. (2006) provided 3+2 as an example of arithmetic whereas 35+29 of algorithmic computation due to 
incorporation of automaticity in the first example. If students were still using a strategy for 3+2, for example, 
counting up; for determining the answer then it would be algorithmic (Carpenter, Fennema, & Franke, 1996). 
Thus, algorithmic computation as it is used in this study involves systematic processes comprised of operation(s) 
and relative symbols to reach to the solution rather than memorized answers to a mathematical problem. 
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However, efficiency, in the sense of automaticity, should still be an essential target of algorithmic computation 
teaching (Howe, 1998) as well as flexibility, and accuracy (Russell, 2000).  
 
Lastly, NCTM (2000) brought a general clarity and defined computational fluency as having and using efficient 
and accurate methods so students can perform computations in a variety of methods such as mental calculations, 
estimation, and paper-and-pencil calculations by using mathematically sound algorithms. 
 
Computational Fluency and Concepts around It 
National Advisory Panel’s report (2008) on mathematics education in U.S. pointed out that algorithmic 
computational skills and conceptual understanding reinforce each other. Similarly Turkish Ministry of National 
Education’s (MONE) report (2005a) also recommended that mathematics education at Turkish schools should 
focus on conceptual understanding together with the goal of improving computational skills.  
 
However, we know a little about the role of computational skills on student achievement, particularly in middle 
and high school levels. Some researchers followed cross-national studies and concluded that computational 
abilities of American students might substantially narrow down the achievement gap between East Asian 
students (Geary, Liu, Chen, Saults, & Hoard, 1999; Mayer, Tajika, & Stanley, 1991). Tolar, Lederberg, and 
Fletcher (2009) said that computational fluency was correlated with achievement in higher-level mathematics 
courses and suggested that classroom practices should include a component that improves adolescents' 
computational fluency, even during the high school years. Although, the researchers indicated that algorithms as 
operational mathematical expressions were not enough to be successful in algebra (Tolar, Lederberg, & Fletcher, 
2009), automaticity with numerical operations were found to be noticeably influence problem solving skills of 
pre-adolescent children (Royer, Tronsky, & Chan, 1999).  
 
In Fuchs et al. (2006) research on elementary grades, it was found that arithmetic (r=0.56) and attentive behavior 
(r=0.60) were the only two significant predictors of success in algorithmic computation. Russel and Ginsburg 
(1984) and Ackerman and Dykman (1995) also found that inattentive behavior can cause low achievement in 
computational fluency. Another research suggested that an empirically-selected intervention over student-
selected one produced higher gains in computational fluency (Carson & Eckert, 2003). 
 
Torigoe (2008) suggested that numbers allow students to compare their results with their everyday experiences 
and numeric problems helped students deal with unit conversions. Moreover, Torigoe recommended that science 
teachers should present the new material with numeric examples until the idea was understood. The researcher 
found that most science teachers taught their subject symbolically and this did not help students master the 
content. In Torigoe’s research, when answering questions with contextualized computation, ~95% of the 
students answered correctly as compared to ~25% when answering parallel questions without computation. It 
showed that computation was facilitated when students were provided with numbers in the problem context as 
compared to the abstract algebraic notation. 
 
Turkish Case 
Initially, school mathematics and science in Turkey followed a strictly linear hierarchical curriculum model until 
the 2004 reform movement (Bulut, 2007). It was assumed that students would master computational fluency by 
the end of elementary school. Besides the fact that reform has not yet had any positive effect on Turkish 
students’ performance in international comparison studies (Zembat, 2010), students are still not allowed to use 
calculators neither in the classroom (Ozgun-Koca, 2009) nor during central examinations. Baki and Celik’s study 
(2005) found that teachers believed using calculators in class would inhibit the computational fluency of their 
students and would result in not being able to finish their work in time during multiple-choice tests.  
 
Mathematics in Science and Mathematics Taught by Science Teachers 
It was suggested by MONE (2005a) that more emphasis on applications taken from science curricula should be 
applied in Turkish mathematics classrooms. However, it is documented that science and mathematics teachers in 
Turkey do not work in collaboration, and most math teachers were not equipped with necessary science 
knowledge (Turkish Academy of Sciences [TUBA], 2004). The consequence for this lack of coordination and 
integration between subjects was that Turkish students learned mathematics as an abstract science with minimal 
real-life connection (TUBA, 2004). Similarly, MONE (2005b) proposed that science teachers should work along 
with teachers from other disciplines to enrich classroom learning. 
 
There is a need of empirical research on the mathematical content knowledge (CK), and pedagogical content 
knowledge (PCK) of science teachers because “unlike the mathematics teacher who can choose to avoid science, 
the science teacher is not able to cover most topics without calling on mathematical concepts and skills” 
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(Frykholm & Meyer, 2002, p. 504). The assumption that science teachers know mathematics needs to be 
substantiated, because having mathematical sense means more than just manipulating numbers (Kulm, 2008), 
and according to the RAND Mathematics Study Panel’s report (2003) even math teachers are unable to explain 
why basic mathematics algorithms worked. Considering the fact that students in Turkey are introduced to 
scientific constants such as Avogadro’s number or Newton’s gravitational constant as early as in eight-grade, the 
importance of a revision of computational fluency in science classes is prominent. High school physics and 
chemistry classes are also subjects in which computational fluency is heavily used. Torigoe (2008) indicated that 
algorithmic manipulation was what most physics tests measure.   
 
Webb (1975) delineated some causes of difficulty for science teachers in teaching mathematical concepts as a) 
unfamiliarity with the symbols, mathematical language and methods, b) the timing and depth of development of 
certain mathematical topics in science classroom, c) lack of familiarity with the use of mathematics concepts, 
and d) failure to relate teaching of mathematics to other subjects adequately (in particular science). 

  
METHODOLOGY 
Intervention 

Exponentials (indices) was chosen as the unit of study because it is one of the two common 
mathematics-related topics (the other one is dimensional analysis) that is explicitly covered in middle and high 
school science curricula in Turkey. Secondly, all participating students had seen this topic before. The first 
intervention was a review of basic concepts of exponentials unit (including scientific notation) which lasted for 
two class periods and implemented by the science teachers. Lesson plans were designed together by the 
researchers and the corresponding science teachers. Conceptual understanding of the algorithms in exponentials 
was the main objective of this intervention. 

 

 
Figure 1. Two Interventions Experiment Model 

 
Instrumentation 
This study employed a quantitative analysis of pre- and post-test scores of middle and high school students after 
two interventions. Both pre-test (Cronbach’s α = 0.60) and post-test (Cronbach’s α = 0.63) each comprised of 10 
multiple choice questions on exponentials were produced alike to end of middle school exam questions in 
Turkey by an expert mathematics teacher. Both tests were required to be solved in 20 minutes each and students 
were not allowed to use calculators.  
 
The pre-test was administered before the second intervention, which was a set of assignments given to the 
students to be completed individually at home. Homework assignments were handed out to evenly divided 
control and experiment groups in each category, and students were reminded that they had to show their work 
and that they were not allowed to use calculators. The correct answers of the assignments together with a 
complete detailed solution of the problems of that day were given to the students with their new homework. 
Control group homework included TP type questions whereas the experiment group homework contained the 
same questions which were presented in contexts chosen from science curriculum (SCP). By this way, problem 
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solving component was controlled so algorithmic computation could be tested for significance between the 
groups. An example question from the homework intervention was as follows: 
 

TP type question: Find the solution in scientific notation (4.2 × 1018)  / (150 × 1014) = ? 
SCP type question: The Richter magnitude scale, also known as the local magnitude (ML) scale, assigns 
a single number to quantify the amount of seismic energy released by an earthquake. An earthquake that 
measures 8.0 on the Richter scale releases 4.2 × 1018 Joules of energy, while the same energy for a 5.0 
magnitude earthquake is 150 × 1014 Joules. How many times more energy is released at 8 Richter scale 
than 5 Richter scale? Calculate the answer by dividing the two given amounts and write the answer in 
scientific notation. 

 
Participants 
Participants of this study were students of a public elementary K—8 school, and 9—12 grades public high 
school in a major metropolitan city in Turkey (Ntotal=150). The public school list was drawn from MONE 
website (http://istanbul.meb.gov.tr/) and the elementary school was randomly selected with the help of a 
computer program. The area where the participants were selected is a developing district of the city and it is 
heavily populated by working class. The schools are located in the district center, and they admit students on the 
basis of proximity to the schools. 
 
Seventy-five of the participants were middle school grades 7 and 8 students, whereas the rest (nhigh_school = 72) 
were high school grades 9 and 10 students. Our sample consisted of 84 male students and 66 female students. 
The attendance during the course of the study never dropped below 90% in any class. 
 
Data Analysis 
The student scores from pre- and post tests were calculated by adding up the exactly correct answers they have 
given in pre- and post-tests. Their achievement in exponentials unit was calculated by students’ total score as a 
measure of their computational fluency, which was the independent variable in our study. In order to determine 
the statistical differences in the pre-, post tests, and delta scores (pre-test score subtracted from post-test score) 
between the control and experiment groups, normality of the data was confirmed by comparing the histograms of 
pre-, post-tests, and delta scores in the whole sample. Secondly, homogeneity of variance assumption was tested 
with Levene’s test for equality of the variances, and no statistical significance in variances was found (p<0.05). 
These two steps made it possible to conduct an independent samples t-test. 
 
In order to answer the research question about the differences on computational fluency between two grade 
levels, the data was split into middle and high school student categories. Although the normality was achieved 
for each category on all variables, homogeneity of variance assumption was found to be violated only for middle 
school post-test variable according to  Levene’s test (p=0.001). Statistical significance between the means of 
control and experiment groups was investigated with the consideration of this result.  
 
Effect sizes (ES) were calculated by adjusting Cohen’s d for delta scores (Wilson, 2010). Pearson’s r was 
computed for the correlation between the post- and pre-test scores. Thus,   
 
ES = (Meanpost-test – Meanpre-test) / SDpooled,        (1) 
SDpooled=SDdelta / ( 2*(1-r) )1/2          (2) 
 
were used to calculate the effect sizes. 
 
RESULTS 
Table 1 contains the descriptive analysis of the whole sample in which means and standard deviations of pre-, 
post-test scores and their difference between —delta scores—are given. The table also presents these statistics as 
they are calculated separately at middle and high school grade levels.  
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Table 1: Mean and Standard Deviation Scores of Pre- and Post-tests with Grade Levels 
 Control Group (n=75) Experiment Group (n=75) 

Pre-Test Post-Test Delta Pre-Test Post-Test Delta  Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
             
Middle 
School 
(n=72) 

6.26 1.76 6.80 1.92 0.54 1.39 6.61 1.29 8.05 1.30 1.44 1.31 

High 
School 
(n=78) 

8.61 1.02 8.69 0.98 0.08 1.46 8.44 0.88 9.28 0.91 0.83 1.16 

Whole 
Sample 
(N=150) 

7.39 1.87 7.71 1.80 0.32 1.43 7.49 1.44 8.64 1.28 1.15 1.27 

Note. Both pre- and post-tests contained 10 questions. SD = Standard deviation. 
 
Independent samples t-test at 95% confidence level provided no statistically significant difference (p=0.70) in 
pre-test scores between the groups after the first intervention, and it was concluded that the groups were at a 
close starting point before the second intervention in terms of their achievement on exponentials topic. The 
analysis procedure was repeated for each sub level data —middle (p=0.31) and high school (p=0.46) — and 
verified to be the same.  
 
After the second intervention ended, the post-test was administered in the classrooms. The analysis of the data 
(independent samples t-test) indicated a statistical significance for p<0.05 between the groups in post-test 
(p=0.000363) and delta scores (p=0.000266). Figure 1 contains confidence intervals around the means of pre- 
and post-tests for control and experiment groups, while Figure 2 shows the confidence intervals of the mean 
delta scores. 

 

 
Figure 2. 95% Confidence Intervals around the Mean of Pre- and Post-test scores 
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Figure 3. 95% Confidence Intervals around the Mean of Delta Scores 
 
In addition, there was also a statistical significance at post-test and delta scores between the control and 
experiment groups when middle and high school data were analyzed separately (p < 0.05 for each four 
categories). The study found evidence in both the pre- and post-test scores that middle and high school student 
scores differed significantly (p < 0.05) from one another. However, when the delta scores were investigated, 
middle school students had a statistically higher result then their peers in high school (p < 0.05).  
 
Finally, there was a correlation between pre- and post-test scores for the whole sample (r=0.63, p<0.01), as well 
as for middle (r=0.63, p<0.01) and a very strong relationship for the high school sample (r=0.95, p=0.08). Thus, 
according to equation (1), ES was calculated as 0.63 accounted for the variance in the whole sample post-test 
score. The ES value for middle school post-test was very high (ES=0.82) but relatively low for high school 
significance (ES=0.17). 
 
CONCLUSIONS 
Previous research had already shown that traditional drill exercises that contain non-contextualized repeated 
algorithmic procedures are not effective ways to improve computational fluency (Davis, 1984; Ginsburg, 1997; 
Webb, 1991). Thus, mathematics teachers should develop alternative instructional methods to help their students 
practice algorithms together with their conceptual understanding. This study showed that science-contextualized 
drill exercises produced higher gains for both middle and high school students’ computational fluencies than the 
traditional drill exercises.  
 
An important conclusion derived from this finding is that science is an effective domain to foster computational 
fluency. On the other hand, since computational fluency is frequently used in science, science teachers can easily 
integrate it into their own lessons. In relation to previous research (Torigoe, 2008), two possible benefits of 
practicing computational fluency in science lessons that are supported by our findings were; 1) there would be 
more class time to foster conceptual understanding of more complex algorithms in mathematics and focus on 
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problem solving strategies, 2) students would learn science topics better when they deal with numerical 
examples. 
 
Gobet and Campitelli (2007) suggested practice drill require effort and are not enjoyable to the students. They 
claimed “Most students are incapable of working on practice activities for long periods of time” (p.160). The 
intervention in this study was designed in a way to increase student attention while practicing computational 
fluency. Thus, it was also noteworthy that the delta scores of middle school students were higher than those of 
the high school students. This can best be explained by the comfort of the high school students with exponentials 
unit. However, in correlation with Fuchs et al’s findings (2006), it can also be speculated that the intervention of 
this study increased middle school students’ attentive behavior towards the drill exercises more than it did for 
high school students.  
 
DISCUSSION 
Teachers of mathematics should focus on pedagogy and try to find better instructional methods to reach to their 
students instead of being a part of philosophical discussions in math wars. Computational fluency is one of the 
key areas of mathematics in which better instructional methods should be developed at all grade levels. In order 
to help our students excel and maintain their skills in computational fluency, computational fluency should be 
the target of each grade level, it should be re-visited and practiced extensively throughout the k-12 curriculum. 
However, computational fluency should not be the concern of mathematics teachers only. In particular, science 
and technology, and in general, all subject teachers should help students develop computational fluency by 
integrating mathematics into their lessons.  
 
Due to the increased pressure of high-stakes testing in the world, and the large volume of participants waiting to 
get admitted to universities in Turkey, there seems to be no change in the selection-based multiple-choice 
centralized testing method in the near future. It is also very unlikely that there will be a policy change in the use 
of calculators during these exams since computational fluency is a skill that causes large variance among 
students. Students definitely need to excel on computational fluency to save time at a test to spend on more 
complex dimensions of mathematics questions. The conceptual understanding of the algorithms is also important 
to be successful in those complex dimensions. Teachers of mathematics need to help their students achieve both 
aspects of computation. Science emerges as a convenient medium to get this help from, as it naturally provides 
the context. Having said this, practicing computational fluency in science classes will also ease the load of the 
mathematics curriculum, and thus teachers of mathematics can have more time to focus on developing their 
students’ problem solving skills. Students will also have more time to focus on conceptual understanding of 
science topics if teaching and practice of computational fluency is shared between subjects. 
 
Recommendations for future research include an extension of this study into the qualitative domain and 
investigate the possible reasons behind the usefulness of the SCP and its relationship with attentive behavior. 
Secondly, there is a need for further research on the mathematical ability of science teachers, particularly on their 
mathematics CK and PCK. 
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