

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
161

USING A HYBRID APPROACH TO FACILITATE LEARNING INTRODUCTORY
PROGRAMMING

Assist. Prof. Dr. Ünal ÇAKIROĞLU

Karadeniz Technical University, Computer Education & Instructional Tech. Dept.,
cakiroglu@ktu.edu.tr

ABSTRACT
In order to facilitate students’ understanding in introductory programming courses, different types of teaching
approaches were conducted. In this study, a hybrid approach including comment first coding (CFC), analogy and
template approaches were used. The goal was to investigate the effect of such a hybrid approach on students’
understanding in introductory programming A quasi-experimental design and one control group (CG, N =38)
and one experimental group (EG, N = 38) were used. While the control group was taught in the traditional way,
the experimental group received another instructional package which included the hybrid approach. Three open
ended questions were administered as a pretest and a Programming Knowledge Test (ProKT) was administered
as a posttest. The Posttest results were examined in two domains (conceptual understanding and problem
solving). In addition, the observations made in the EG classroom were interpreted as qualitative data. While
there was no statistically significant difference between two groups in the pretest scores, EG students performed
better than the CG students in problem solving domain of posttest. Observations and posttest results showed that
the EG students were better in remediating the deficiencies especially in problem solving, in addition to basic
programming concepts and language features. Based on these results; it was concluded that integrating three
different approaches together has positive effects on facilitating students’ development of introductory
programming knowledge.
Keywords: Analogy, Templates, Comment First Coding, Teaching Programming Languages

INTRODUCTION
Wiedenbeck & Ramalingam (1999) defined programming as a process which includes a variety of cognitive
activities, and mental representations related to program design, program understanding, modifying and
debugging. In addition, Bayman & Mayer (1988) specified that programming involves syntactic, conceptual and
strategic knowledge. The syntactic knowledge includes programming languages’ specific facts and rules,
conceptual knowledge concerns programming structures and principles, and strategic knowledge is related to
applying general problem solving skills. The programming process is a complex process which has two main
phases (problem solving and implementation) summarized in Figure 1.

Figure 1: Programming Process

The steps and the processes of programming in the implementation and problem solving phases are specified in
Table1.

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
162

Table 1: Phases of programming process
 Programming Phase Processes done in this Phase

Phase1

Analyze user
requirements

Problem is defined; what the inputs and the outputs
should be, and the operational parameters within which
the system is expected to work.

Design the Program Solution to the problem is designed by defining a
logical sequence of steps that will achieve each of the
stated system objectives such as algorithms or
flowcharts.

 Implementation
Phase

Processes done in this Phase

Phase2

Code the Program The algorithms are translated into a programming
language with concrete solutions.

Document and Test Providing technical references to inform the user about
the features of the software and how to use it.

Operate and maintain
the system

Monitor the performance of the system over time to
ensure that it is behaving as expected.

Introductory programming courses have become mandatory in computer science and informatics programs. In
Turkey, also, in computer and instructional technologies departments, introductory programming courses are
mandatory in the second year both in the first and second semesters. The objectives of the courses are generally
to understand the first three steps (analyze, design and code) of the programming process. These steps are
indubitably complex for novices to understand and this complexity causes some deficits in learning
programming. Ismail, Ngah & Umar (2010) defined the reasons for these deficits as being a lack of problem
solving skills, lack of analytical thinking skills, and a lack of programming conceptual understanding.

RELATED STUDIES
Novices may be investigated in three categories. The first category includes really poor students who do not
understand the basic concepts. The second may understand basic concepts if the teachers use effective teaching
approaches. The third are those who can easily grasp the nature of programming concepts (Dunican, 2002).
Introductory programming courses generally aim to enhance students in the second category, allowing them to
progress to the third. Although different types of teaching approaches were used to promote novices’
performances, poor rates of student success have been indicated in many studies (Barg et al, 2000; Carbone &
Sheard, 2002; Hagan & Macdonald, 2000; Stein, 1999; Williams & Kessler, 2000). In this context; a number of
challenges have been identified (Dunican, 2002; Jenkins, 2002; McCracken et al, 2001; Proulx, 2000). Winslow
(1996) pointed out that some students can solve the problem manually but they have trouble translating solutions
into equivalent computer programs. It is known as transferring step-by-step problem-solving from a natural
language into a program. In addition, Weigend (2006) observed that students may find a mental or practical
solution to a problem but they fail to write a correct program for solving the problem. Another deficit is a lack of
general problem solving skills because the students are the product of an educational system that does not have
this kind of problem solving module included in any of their subjects. Another problem concerns concretizing
components such as variables, data types, memory etc. Mannila (2007) stated that there seems to be a general
lack of attention to program comprehension skills in education. If students cannot understand the code presented,
they may shape their own conceptions and strategies and that is certainly something instructors want to avoid. In
addition; De Raadt (2007) reviewed Australasian research studies concerning novice programmers. These studies
have shown that novices are not performing at expected levels and many novices have only a basic knowledge of
programming.

In this context; Ismail, et al (2010) reviewed several studies and made note of the most difficult issues for
students, which are summarized in Table 2.

Table 2: Difficulties in Programming knowledge
Difficulties Programming knowledge
Deficiencies in general programming constructs Basic programming concepts
Using ineffective coding and designing techniques Language features
Unable to analyze problems and using ineffective problem
solving techniques

Problem solving

Moreover, a multinational study among university students have shown that there is a worldwide difficulty in
mastering computer programming (McCracken et al, 2001).

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
163

Some different approaches have been conducted for eliminating the difficulties. Miliszewska & Tan (2007)
discussed some of the difficulties experienced by first year programming students. They also reported on the first
stage of a project designed to develop a balanced approach for teaching. Hui Hui & Umar (2011) have
investigated the effect of metaphors and pairing activity in programming process. They found that metaphors
have assisted learners in developing better conceptual understanding by enabling them to link known to newly
acquired abstracts and that pair programming cultivates peer discussions. Another study suggested a teaching
model integrating cognitive conflict and program visualization. They found the teaching model is potentially
effective in enhancing engagement with learning materials and may therefore help novice programmers to
understand basic concepts better (Ma, Ferguson & Wood, 2011).

Although some new approaches have been tested; the difficulties in learning programming show that there is an
urgent need to find new ways for better student learning outcomes (Thuné & Eckerdal, 2009). This is not easy to
achieve unless the new teaching approaches are implemented and adequate pedagogical techniques are utilized.

Purpose of the study
The difficulties in teaching programming show that there is still a need for finding new ways of attaining better
student learning outcomes. This paper focuses on a hybrid teaching approach by combining three teaching
approaches taken to teach introductory programming to novices. The main question discussed in the study is:
Does using hybrid approach have an effect on conceptual understanding and the problem solving domains of
introductory programming? Also, the findings were interpreted to estimate how the approaches affected the two
domains of programming.

METHODOLOGY
Selecting Programming Paradigms for Novices
Since problems can be solved in different ways, choosing the best paradigm for problem solving is not easy.
Besides, there is still not a consensus on a programming paradigm for introductory courses. By evaluating the
advantages and disadvantages of paradigms, Vujosevic-Janici & Tosi’c (2008) pointed out that the most suitable
paradigms for introductory students are procedural, procedural part of the object-oriented, and the event-driven
programming paradigms. In this context, introductory courses should focus on general programming ideas and
concepts, while considering both basic and more advanced concepts. Siegle (2009) indicates that imperative and
event driven programming paradigms appear to be the dominant paradigm in most introductory courses.

In this study, an imperative paradigm underlying the basic problem solving techniques was introduced first.
After the imperative paradigm; Delphi, including the event driven paradigm, was taught. By using the event
driven paradigm, students used events of the programming language environment provided to make high level
abstractions. So they were only responsible for writing codes to solve the problem, and did not have to struggle
with other details.

Teaching Approaches in This Study
In order to facilitate the development of programming knowledge, different approaches (CFC, analogies and
templates) were introduced at different phases of the programming process. Figure 2 illustrates the phases and
the approaches selected and used in treatment.

Figure 2: The approaches used in treatment

CFC : Although learning the syntax or semantics of a statement individually is not so hard, combining them is
usually difficult for novices. Also, solving problems on paper or finding the solution mentally is often easy, but
generally students have trouble translating their thoughts into an appropriate programming code (Sengupta,
2009). One approach for facilitating the overcoming of this problem is to use comments before coding programs
known as CFC. Generally comments are used for making the source code easier to understand. It means coding
that is like talking. Hence, in order to transfer a solution of a problem step by step, directly from a natural
language into a program, the CFC method is used in this study.

Learn language
features and general
concepts

Learn to design
programs to solve
problems

Learn problem solving

CFC/Analogies

Templates

Analogies/Templates

1 2 3

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
164

Example: “Decomposing words from a sentence (eg. “I went to the cinema”).”

1//Input the sentence.
2//Put “@” character to the end of sentence.
3//Locate the first space character.
4//Set the index of space character as end of the word.
5//Set the index of space +1 as the beginning of next word.
6//Repeat 3-6 until the last character “@”.

Analogy : In the programming process analogy is performed to construct new concepts by using the existing
ones that the students are already familiar with. As it is known, analogy plays a significant role in problem
solving, decision making, memory and creativity (Gentner, 2000). In programming, sometimes problems recall
other problems which students have seen or solved before. If students remember the previous solution method,
they may use it also to solve the current problem. This may be defined as drawing an analogy between the
solution methods. Analogy can also be used to illustrate statements or general programming concepts. For
example, Dunican (2002) describes several analogies: the use of children’s toys to teach assignment statements,
the use of boxes to determine the smallest and largest number in a list, and the use of a leaflet distributor to
explain the concept of array manipulation.

Templates : Linn & Dalbey (1989) suggested using templates to facilitate implementation and problem solving.
According to Rist (1991) programming is a process of implementing basic plans which form more complex
plans when combined. To achieve the goal, a programmer can search for templates. Templates perform useful
functions (eg., sorting a list of numbers or addition of a set of numbers) which can be considered as units of
programming knowledge which are designed by experts who have had many years of experience addressing
many different problems. Expert programmers know a great deal more than just the syntax and semantics of
language constructs (Byckling & Sajaniemi, 2006; Rist, 1991). Templates may enhance novices’ programming
more effectively, in problem solving and also in the design phases. Interfaces, forms, lists, outputs or other
components may be designed by using the experts’ examples. In this sense, teachers generally indicate that
getting support from experts’ templates will be useful for students.

Example: “Writing a program to find the frequencies of the words in a list.”

A student may have a plan in three stages used by an expert.
(1) read the words using the loop template,
(2) find the frequencies using the frequency template,
(3) use print template to print sorted word list.

These three approaches may be used either one by one or together in the program coding process. An example is
shown in Figure 3 including the analogy and template approaches together. The example is a code for “sorting
the given numbers in ascending order”.

Figure 3: A piece of code which Analogy and Templates used together

Research Design and Sample
The study was conducted over one semester in introductory programming courses at a computer and
instructional technologies department to second year students as a quasi-experimental design. The participants
enrolled in the course, one experimental group (EG) (with 38 students, 22 male, 16 female) and a control group
(CG) (with 38 students, 20 male, 18 female) were assigned as naturally occurring groups in the study. The

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
165

distribution of the students’ graduate schools was both similar. The researcher was also the tutor of both the
groups.

Process
The intervention was conducted during course time through 5 lessons a week; 3 hours in the classroom and 2
hours in the lab, for 10 weeks, the details of which are shown in Table 3. Both of the groups were informed
about language features, program design and problem solving in the courses. The courses included programming
language constructs, algorithm development, interface design, general programming concepts (memory, data
types, functions, procedures, and the basic data structures, I/O operations) and problem solving activities. The
CG received traditional instruction which included teacher explanations, demonstrations, and simple problem
solving examples. The CG students were frequently taught using ‘chalk and board’ lessons. They used text
books and teachers’ notes as references. In the lab they studied the examples and did their homework. EG
students received the same subjects with another instructional package, which included a combination of three
different approaches in teaching programming. These approaches were CFC, analogy, and the template, which
were used in the different phases of the programming process in order to support student’s learning. This kind of
educational support is generally called ‘scaffolding’, Vygostky’s term which suggests helping students by
bringing them up to a higher level of understanding. The schedule for two groups is shown in Table 3.

Table 3: The schedule for two groups

Week Subject Teaching Methods
 Control Group Experimental Group

1 First program, compilation,
syntax errors

Presented on PC screen Presented on PC screen

2 Variables, data types,
memory, and arithmetic
expressions, conditional
statements, complex
conditions

Used direct teaching,
presentation method in teaching
arithmetic expressions and
conditional statements

Used analogies in teaching variables,
data types, memory and conditional
statements

3 Loops (for, while, repeat) Generally used direct teaching,
gave examples from textbook.

Used different analogies in teaching for,
while and repeat. Taught how to use
CFC.

4 Arrays, character arrays and
string processing, functions,
procedures, parameter
passing, problem solving

Used direct teaching, used
presentations on showing array
examples

Made analogies for expressing arrays,
parameter passing and used several
templates about arrays, functions and
procedures. Also stimulated students to
use CFC.

5 Recursion, problem solving

Wrote the recursion codes on the
board and examined the codes
line by line.

Used templates about searching, sorting
and trees also used CFC codes in long
examples. Used analogies when solving
the problems.

6 Introducing the
environment, forms and
menu items

Presented the Delphi
environment by projector

Presented the Delphi environment by
projector

7 Input/Output on Canvas Taught to design basic input
output forms, message boxes

Showed simple message boxes then
showed how to used experts’ template
forms and boxes.

8

Event handlers and methods Showed on Delphi how to use
Delphi events and methods, gave
examples about the events of
buttons, edit boxes.

Used analogies when teaching different
methods

9 User interface design,
reports

Showed simple interfaces based
on forms, menus and boxes,
showed only one type of
reporting.

Used templates in interface design

10 Applications using visual
components library,
debugging and testing of
Delphi programs

Students constructed examples
by using different visual
components in lab.

Students constructed examples by using
different visual components in lab.

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
166

Instruments
The study began with the administration of three open ended questions to both groups of students as a pretest
(see Appendix1). The pretest included questions about basic programming language features, basic concepts in
programming and a simple problem. The pretest showed that the students had similar distributions in
programming experience in both groups. The participants in EG were 16 inexperienced, 15 basic level, 5
intermediate level, and 2 advanced level of experience. The distribution in CG were 18 inexperienced, 14 basic
level, 5 intermediate level, and 1 advanced level. The statistical analysis of the pretest also showed that there was
no significant difference in students’ programming knowledge at the beginning.

During the intervention, the researcher observed students in lessons for each group, with each group following
the same subjects. In the last week of the intervention, the “Programming Knowledge Test” (ProKT) (see
Appendix2) was administered to both groups as a posttest. The ProKT was designed through a programming
knowledge evaluation model (Bayman & Mayer, 1988). According to their approach, programming knowledge
may be examined in three main categories shown in Table 4. In this sense, from a technical point of view
Govender & Grayson (2006) also specified three main aspects (data, instructions and syntax) for learning
introductory programming.

Table 4: Categories of programming knowledge
Syntactic knowledge Using statements syntactically correct
Programming
Structure Knowledge

Give meaning to actions when programming executing, design solutions for
programming problems.

Strategic Knowledge Combining design, code and test knowledge with problem solving skills

Considering this model, the open ended questions related to programming knowledge were prepared by creating
an evaluation test (McGill & Volet, 1997). The test was adapted to the Delphi considering the instructional
objectives and common student conceptions reported in the evaluation test. Two raters first assigned the points
for the questions individually, and then they discussed the questions with each other until they come to exact
agreement on each item on the scale. It can be concluded that they shared a common understanding of the
criteria on the scale.

Data Analysis
In the analysis of ProKT, the total score of each student in both groups as well as the mean score of each group
were computed. This computation was performed after all test papers were examined and rated by two
independent expert tutors as per the criteria (See Appendix 3); one has a 10 year programming past, the other has
12 years of experience as a programming instructor. As it is known, raters are often used when students’
performances cannot be scored objectively as right or wrong but require a rating of degree (Stemler, 2004). The
Pearson correlation coefficient between the raters’ scores was r= 0.84 which is between (0.75-1) and can be
considered as a strong positive correlation. The explanations sections for all questions in the test were also
examined to determine why the students used the approaches to answer the questions.

The statistically significant difference between CG and EG was determined by using the independent t-test.
Because there was no statistically significant difference between the pretest results, the posttest results were also
compared using the independent t-test to address the effects of intervention. In addition, the observations were
interpreted with quantitative data.

RESULTS
The mean scores of the pretest were found to be similar between the two groups: EG (M: 48.29; SD: 13.47) and
CG (M: 50.52; SD: 11.96). Also, as shown in Table 5, there was no significant difference between the mean
scores of the groups EG and CG (t(74): -7.66, p:0.446>0.05) according to the independent t-test results. This
indicates the similar backgrounds of the students in both groups before the intervention.

Table 5: The results of t-test on pretest scores (EG and CG)

Groups N M SD df t P
EG 3838 48.29 13.47 74 -7.66 .446 CG 38 50.52 11.96

The rest of the results section organized as; comparison on posttest results, comparison in conceptual
understanding and problem solving, observations during the procedure in EG, experts’ reviews on students’
posttests and clinical interviews on posttests.

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
167

Comparisons on posttest scores
The descriptive statistics for the data obtained from the posttest is presented in Table 6. An independent sample
t-test was conducted with the data from all sections of the posttest. (Conceptual understanding (Q1 and Q2),
Problem solving (Q3 and Q4). A statistically significant difference between the mean posttest (ProKT) scores of
the EG (M: 58.90; SD: 15.26) and CG (M: 46.63; SD: 14.28) groups was found (t(74): 3.825, p: 0.000<0.05).
This reflects that the EG students performed better after treatment considering all sections of ProKT.

Table 6: The results of t-test on posttest scores (EG and CG)
Groups N M SD df t P

EG 38 59.60 15.26 74 3.825 .000 CG 38 46.63 14.28

Since the questions are related to the different domains of programming knowledge, the analysis was carried out
by considering the questions one by one, and considering the two different domains. The independent t-test
results for the two groups about the first three questions (Q1, Q2 and Q3) are shown in Table 7. Since Q3 and Q4
are related to the “problem solving” domain, they were analyzed individually and the results of Q3 are included
in Table 7. As the computation showed that the distributions of variables do not show normal distribution, the
Mann Whitney U Test was conducted within Q4 in order to determine the significance of the means of the scores
of each group statistically. The results concerning Q4 are presented in Table 8.

Table 7: The results of t test on posttest scores (EG and CG) for (Q1, Q2, Q3)

Phases Questions Groups N M SD df t P

Conceptual
Understanding

Q1

EG 38 14.03 2.28 74 0.413 .681
CG 38 13.81 2.15

Q2 EG 3838 17.76 4.89 74 1.631 .107
CG 38 15.66 6.27

Problem Solving Q3 EG
CG

3838
38

16.05
11.18

5.47
6.30

74 3.594 .001

In Q1 within “conceptual understanding” the descriptive results are; EG (M: 14.03; SD: 2.28) and CG (M: 13.81;
SD: 2.15) in favor of EG and statistically (t(74)=0.681, p: 0.681 >0.05). The results for Q2 are: EG (M: 17.76;
SD: 4.89) and CG (M: 15.66; SD: 6.27) in favor of EG; where (t(74)=1.631, p: 0.107>0.05). The result reflects
that, when the scores about Q1 and Q2 for both groups is analyzed individually, no significant difference exists
between EG and CG.

In Q3 within “problem solving”, the t test results are: EG (M: 16.05; SD: 5.47) and CG (M: 11.18; SD: 6.30) in
favor of EG, and statistically (t(74)=3.594, p: 0.001<0.05). According to the averages of scores for Q4, the
results from the Mann Whitney U test shows that there is a prominent difference in favor of group EG. EG (M:
11.76), CG (M: 5.97).

Table 8: Mann Whitney U test result for Q4

Phases Questions Group N Mean Rank Sum of Ranks U p

Problem
Solving

Q4 EG 38 48.46 1841.50 343.500 .000
CG 38 28.54 1084.50

A significant difference among groups was found in favor of EG; U=343.5, (p: 0.000<0.005). So, after
examining the scores of Q3 and Q4, it was found that, statistically, the mean scores taken from each question
respectively illustrate that both have significant difference favoring EG.

Comparison in “conceptual understanding” and “problem solving”

Q1 and Q2 were considered together to determine “conceptual understanding” in programming knowledge. Q3
and Q4 were also analyzed together in order to determine whether or not there was significant difference
between the groups in the “problem solving” domain. The independent t-test results are presented in Table 9.

Table 9: The results of t test on posttest scores (EG and CG) for (Q1- Q2 and Q3-Q4)
 Phases Question Groups N M SD df t P

Conceptual
Understanding

Q1-Q2 EG
CG

38
38

31.78
29.47

5.88
7.42

74 1.507 0.136

Problem
Solving

Q3-Q4 EG
CG

 383
38

27.82
17.16

11.26
9.05

74 4.546 0.000

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
168

The mean scores regarding Q1 and Q2 together were EG (M: 31.78; SD: 5.88) and CG (M: 29.47; SD: 7.42) in
favor of EG. Posttest results for (Q1 and Q2), did not show significant difference in the mean scores between
groups for “conceptual understanding”; the statistical result was t(74)=1.507 and p>0.05). The descriptive results
were in favor of EG, that is EG (M: 27.82; SD: 11.26) and CG (M: 17.16; SD: 9.05). Statistically, a significant
difference exists in the “problem solving” domain of programming knowledge between groups in favor of the
EG, which are t(74)=4.546, (p:0.000 <0.05). As a result, students in the EG attained higher levels of
programming knowledge than did the CG students. It is important to notice that the EG students’ scores are
significantly greater than the CG ones in the (Q3 and Q4) “problem solving” domain. This may be interpreted as
an indication of the effectiveness of the use of the hybrid approach. In contrast with the “problem solving”
domain; there was no significant difference between EG and CG in the “conceptual understanding” domain. The
average scores of the EG and CG from posttest sections are shown in Figure 4.

Figure 4: EG and CG students posttest averages scores

Observations during the procedure in EG
During the procedure the researcher observed and noted the student behaviors in the EG. The main questions
were, “Can students use the new approaches?”, “Do they understand where they can use the approaches?” and
“Is there any difference between EG and CG groups learning programming process?” The sequence of used
approaches was planned through the curriculum in the sequence of language features, basic programming
concepts and problem solving, as shown in Table2.

During the intervention the researcher generally observed that students easily grasped the use of three new
approaches. At the beginning they used CFC in informal ways within their own sentences, but they learnt to
develop CFC sentences in time. After six weeks, the instructor designed problem solving activities. In addition,
during the process, some analogies in programming concepts (memory, arrays, variables, stacks, etc.) were
taught to the EG. Analogies took some more time for instructor to teach concepts by using them. Analogies were
helpful to EG students but sometimes they still made mistakes in using abstract concepts like memory, disk
allocations etc. Some of the students could also use suitable templates for their programs. A few of them tried to
memorize some templates, but instructor made them to use templates by referring from experts codes. In
problem solving activities, students sometimes failed to engage in planning the problem solving process. The
main problem was decomposing problems into sub problems that they learnt to use templates for solving these
problems.

Experts’ reviews on students’ posttests
Student posttest responses were evaluated by two experts as per the criteria in Appendix3. The approaches used
in the answers are noted on Table 10 and Table 11.

Table 10: The distribution of approaches used by EG students in posttest answers (1-18)
Student
 (The first
18 scores)

S37*

S8*

S7*

S5*

S19*

S6

S18*

S14*

S29

S16

S36

S30*

S4

S34*

S28

S9

S20

S21

CFC Q
2
Q
3
Q
4

Q
2
Q
4

Q
3
Q
4

Q
3
Q
4

Q
3
Q
4

Q
3
Q
4

Q
2
Q
3
Q
4

Q
2

Q
3
Q
4

- Q
2
Q
3

Q
3
Q
4

Q
3
Q
4

Q
3
Q
4

- Q
3
Q
4

Q
3
Q
4

Q
2
Q
3

Analogy Q
2
Q

Q
2
Q

Q
2
Q

Q
2
Q

Q
1
Q

Q
4

Q
3
Q

Q
2
Q

- Q
2
Q

Q
2
Q

Q
2
Q

Q
3

Q
2
Q

- - -
Q
3

-

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
169

3
Q
4

4 3 3
Q
4

3
Q
4

4 3
Q
4

3
Q
4

4 3
Q
4

3
Q
4

Template Q
3

Q
3

Q
3
Q
4

Q
3
Q
4

Q
2
Q
3

Q
4

Q
3
Q
4

Q
3
Q
4

Q
4

Q
4

- Q
3
Q
4

Q
3

Q
3

- - Q
4

-

Post test
score 90 88 85 78 77 75 75 70 70 68 68 67 65 65 62 60 60 60

*: Student used three approaches at least 5 times.

Table 11: The distribution of approaches used by EG students in posttest answers (19-38)
Student
 (The last
18 scores)

S31

S3

S1

S2

S23

*

S24

S26

S32

S22

S25

S38

S12

S13

S15

S33

S10

S11

S17

S35

S27

CFC
Q3
Q4

Q2
Q3
Q4

- Q4 Q3
Q4

- Q3
Q4

- Q3
Q4

- Q3
Q4

Q3
Q4

- Q4 Q2 Q3 Q4 - Q3
Q4

Q
2

Analogy
Q3
Q4

- - Q3
Q4

Q2
Q3
Q4

Q2 Q4 - - - Q3 Q3
Q4

- - Q2
Q4

Q2 Q1
Q2
Q4

Q2 - Q
3

Template - Q4 Q3 Q4 Q4 - Q2 Q4 - - Q2
Q4

- - Q3 - - - Q3
Q4

- -

Post test
score

6
0

5
8

5
5

5
5

5
5

5
5

5
5

5
3

5
0

5
0

4
8

4
5

4
5

4
5

4
5

4
3

4
0

3
5

3
5

3
0

*: Student used three approaches at least 5 times.

It can be seen from Table 10 and Table 11 that there were 19 students who used all of the three approaches and
only S13, S25 and S28 did not use any of the approaches. Table 10 and Table 11 show that S37, S8, S7, S5, S19,
S18 and S14 (Table 10) and S23 (Table11) used all of the three approaches at least 5 times. As can be seen, their
total scores are at least 55. In addition, the first 8 students all used these three approaches except S6 who used
only Q3 and Q4. These statistics present some evidence that students who used all of the approaches performed
better than others. Another statistical data was obtained by determining the approaches’ frequency of use related
to the questions. This may also give an idea of the relationship between students’ total score and the use of
approaches in the posttest. So Figure 5 shows the frequencies of approaches in descending order of scores.

Figure 5: The frequencies of use of approaches (Listed from highest score student to lowest)

The frequencies of approaches used in students’ answers are illustrated on Table 12.

Table 12: Frequencies of approaches used student answers in EG
 Questions
Used Approach (f) Q1 Q2 Q3 Q4 Total
CFC - 9 24 26 60
Analogy 2 18 19 21 58
Template - 4 17 21 42
Average Score 14.02/16 17.76/24 16.05/24 11.76/36

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
170

As seen from Table 12, in Q1, only 2 students used analogy. In Q2, 9 students used CFC, 18 students used
analogy and 4 of them used the template approach. In Q3; 24 students and, in Q4; 26 students used CFC. 19
students provided solutions using analogy in Q3 and this approach was preferred by 21 students in Q4.
Templates were used 17 times in Q3 and 21 times in Q4. The total frequencies of use of approaches may give
some idea of the order of students’ preferences to the approaches, which are, in descending order, CFC, analogy
and template.

Clinical Interviews on Posttests
In order to obtain more data regarding the effects of the approaches; clinical interviews (CI) were conducted with
5 students. These students were (S14: used both of three approaches, S31: used CFC and analogy, S9: used only
CFC, S3: used CFC and templates, The passages from interviews related to their answers are shown in following
tables (Table 13, Table 14, Table 15, Table 16)

Table 13: Examples of student answers from EG and CG to same problem

CI with 31(Used CFC and analogy)

Q3-3: Input a sentence and print out if it is a palindrome
Student Answer from EG

In this answer, the student made an analogy in
reversing a sentence. Although it was a good analogy,
she made a mistake in joining characters of the
sentence. In all steps of the loop she assigned the
characters one by one to a memory location
(new_sentence). The mistake was that she used the
same location for individual characters. After the end
of the loop, (new_sentence) includes only the last
character of the sentence. Considering this mistake as
an iteration problem, it can be evaluated in general
programming concept domain.

Student Answer from CG

In this answer, another student from CG has three
basic mistakes. First; he did not understand the use
of “while” statement that, “while” needs a condition
to stop. He could not organize if statement because
“else writeln (‘sentence is not palindrome’)”
requires to write message on the form many times.
Statement “else” could be provided many times eg.
“anka” sentence [1] = sentence [4] (‘a’=’a’) but,
sentence[2] <> sentence [3] (‘n’<>’k’). Also
student understood sentences as array of characters,
but could not organize the characters in the string
array.

Table 14: Clinical interviews and student answers (S14)
CI with S14 (Used both approaches)

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
171

Q4-1: (See Appendix2 (Q4-1))
Student Answer:

In this answer, S14 used CFC in
order to divide the problems into
sub problems. This was roughly
planning the program. He used
comment lines before writing
codes.

Table 15: Clinical interviews and student answers (S9)

CI with S9(Used only CFC)

Q4-1: (See Appendix2 (Q4-1))
Student Answer: S9 used CFC from second form of CFC.

The question consists of more
than one step for creating
shapes, moving the shapes,
controlling the crashing and
painting the shapes. An
example answer used CFC in
defining the steps and
dividing the problem into sub
problems. The student used 3
phases of CFC; mostly the
second phase.

Table 16: Clinical interviews and student answers (S3)

CI with S3(Used only CFC and templates)
Student Answers from EG and CG for

Q3-2: Compute the combination value of given two integers [C(a,b)]

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
172

Student Answer: Answer of S3 used CFC and templates

S3 from EG used CFC in order to define the
program pieces, and also used factorial template
in order to calculate the combination. The
reviewer noted that student calculated “eg.
k:=k*i” but he did not set “k:=1” before “for”
loop. The mistake reflects the use of CFC and the
factorial template was well thought, but student
have problems using the memory functions.

As seen in the examples of student posttest responses, three approaches were used by the students in different
forms. All of the three approaches supported EG students in giving more correct answers than CG students.
Pretest and posttest comparisons, experts’ reviews, clinical interviews and the observations in the EG classroom
provided evidence regarding the use of all three approaches with the EG. The expert reviews demonstrated that
the students who got higher scores used all of the three approaches intensively. The posttest comparison also
provided some evidence of the higher performances of EG students, especially in the problem solving phase. The
clinical interviews also showed students’ ideas that they generally indicate how they used CFC, analogy and
templates.

DISCUSSION
Although there are some research studies which separately investigate the difficulties in students’ understanding,
these research studies typically used only one teaching approach. This study, using a new approach, presents
some evidence of success for novice programmer students, supporting the suggestion that programming
language tutors should give attention to the use of appropriate learning activities (Oliver, 1993). Also Ismail, et
al (2010) emphasized that programming requires higher level of knowledge at the strategic or conditional level.
Thus, CFC and analogy are closely related to conceptual understanding. Because writing the whole code step by
step helped students to spend less time on coding, this also encouraged students and they could then start
incrementally adding semantics to their programs by including more additional structures. As an example in
Table 15, the student put forward the shape movement in his own words, and then he began to adjust the
statements systematically. This includes conceptual understanding of the properties of components (shapes).
Hence writing correct codes will play an important role for continuing to the next step for students. Sengupta
(2009) indicated that CFC improves functionality and reduces the complexity of the program, while allowing the
student to compile and test each individual step. This study showed that CFC encouraged students to define the
steps of the program and to associate the program’s features with students’ thoughts, and improved students’
coding process.

Concretizing the components such as variables, data types, memory, etc was emphasized as a deficit for students.
In this study, students in the EG performed better on overcoming the deficiencies in writing correct codes, which
are related to the conceptual understanding. Thus, the basic programming concepts which are taught by analogy
are also positively affected by conceptual understanding. By using analogy; memory, disk allocations, files
options are well understood and used by students. Posttests showed that, analogies were also used in problem
solving. The “pearl necklace” was an interesting example in enhancing students’ cognitive development by
providing scaffolding for them to construct new knowledge based on their previous knowledge. Since analogy is
a complex cognitive process, this study can be considered as an example so that efforts in other domains may be
adapted to programming concepts. Consequently, the proposed approach for teaching introductory programming,
that is, analogy, may be a tool for teaching abstract concepts in programming.

The template approach can be considered to be a facilitator for problem solving. In this study, templates which
include the procedural skills of planning, testing and reformulating codes were improved the students’
achievements in problem solving phase. A swapping template used by students was a simple example for using a
swapping template in sorting, merging or other applications; it means reusing the template. Schank, Linn &
Clancy (1993) suggested that using the templates supported students in remembering and reusing information,

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
173

and students may gain a deeper understanding if the representation was introduced in the context of a
programming case study. In this study, students planning with available templates reduced the task because some
of the smaller programs were already written. From a theoretical viewpoint some complex subjects can be
understood easily by looking at the previous related subjects (Dunbar, 2001). So by using templates students can
use expert strategies (including the use of the procedural skills) abstracted from the specific language.

The results showed that, in the conceptual understanding domain, both the EG and CG had nearly equal
performances that were statistically insignificant. This may be related to the structure of the entry-level
programming concepts presented to students. In this domain, the average of EG posttests is greater than CG,
which might indicate a positive effect of the hybrid approach in understanding language features and general
programming concepts. Also the clinical interviews and student posttest responses showed that the EG students
made mistakes in using memory, iterations, variables and arrays less frequently than the CG. This can be
interpreted as the analogies playing a facilitator role; but this does not mean that the EG students understood the
concepts better than the CG. In the problem solving domain, there was a significant difference between the
groups. Especially in Q4 which measures analytical thinking, programming language structure knowledge, and
correct code writing skills; the difference between groups was prominent in favor of the EG. The students in the
EG could use the templates in order to write the “crashing and painting the components” in this question. Also
using CFC, they eliminated the syntax errors and this motivated the students to continue on in their projects. In
contrast to the EG, some students left the projects as a result of uncorrected syntax errors in the CG. So even if
the syntax errors did not directly affect solving the problems, overcoming this problem facilitated continuation of
problem solving. As Rist (1991) highlights, the main source of difficulty does not seem to be only in the syntax
or understanding of concepts, but rather in the problem solving. A student can learn the meaning of array, but
still can fail to use it appropriately in problem solving. In this study analogies helped students in drawing an
analogy between possible solutions, so students in EG could decompose the program, and solve them more
easily. Templates also facilitated problem solving, because students used the templates as soon as possible to
reach a code difficult to write, which allowed them to integrate their own programs.

A number of previous studies have demonstrated that instruction using these approaches solely also improve
learners’ conceptual knowledge of programming (Robins, Rountree & Rountree, 2003; Sengupta, 2009). This
study, using a new approach, found that the programming knowledge of novices significantly improved when
appropriate training was provided through the combination of three approaches. This may suggest that using the
approaches in combination of one and the other may increase performance better than using one approach in
solely. Related to Table 12, we can have an idea about the effects of approaches that; CFC and analogies
together were affected on conceptual understanding more and also CFC, analogies and templates together were
effective on problem solving domains. Some other experimental studies are needed for determining the absolute
effects of the three approaches.

In addition; the study has some limitations. During the lessons in CG, the use of CFC and templates were kept
entirely under control. But instructor has used a limited number of analogies while providing natural
explanations for programming codes. Instructor used them necessarily, because without using them, it would be
difficult for students to understand the subjects to which the analogies pertained. But the analogies used were
limited in number and not detailed like the ones employed in EG. It was very difficult to avoid this situation in
CG so it may be considered to be a limitation for this study. Another limitation is the number of participants in
the groups. In fact, in both groups there were more students than those included in the study. Some limitations
have led to some of the students not to be included in this study. In this context, students whose pretest and post
test scores were very low (less than 5/100) were not included in the study. Also, in both groups, students who
had more absences than was allowed were not included in the study. In addition, during the process of EG; in the
classroom, they worked with the templates which the instructor has chosen. He only guided for them about how
they can find other templates about related subjects.

CONCLUSION AND IMPLICATIONS
Researchers are still trying out new approaches for teaching programming. In this study, students who used the
hybrid approach significantly outperformed the students who followed the traditional programming course. The
results of this study suggest that combining different approaches may enhance programming tutoring and this
may have positive effects on students’ development of their introductory programming knowledge, so it may be
used as a facilitator. The hybrid approach provided an opportunity for students to use their cognitive strategies
and relevant conceptual knowledge in programming languages contexts. By using the hybrid approach,
instructors began to explain why and how programs work, what the strategies are for decomposing tasks or
problem solving, rules for the creation of well-formed programs and design features. It also provided experience
of using the CFC method in the classroom for some students who could not produce correct pseudo codes, or

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
174

could not transfer their pseudo codes into a true code. Thus the results showed that CFC may have an effect on
applying the correct rules of syntax when programming, and analogies on the development phase of programs,
while templates enhance communication for getting support from sample codes to solve problems. Despite many
advantages of the new approach, special efforts must be made to correct some mistakes, especially with regard to
iteration, variable usage and memory operations.

In addition instructors should know that learning programming is a complex process. In order to facilitate this
process; they can use CFC, analogies or templates. The main issue regarding the use of these approaches is
answering the basic question; “Where and when should the instructor use these approaches?” According to the
results of this study; instructors may use analogies when teaching abstract subjects like memory and disk
allocations. They can use templates, especially in problem solving, to refer the good solutions. CFC can be used
in the first phase of code writing, it helps students to ensure about their code syntax are true. Also decomposing
the problems with CFC will encourage students to continue on writing. This is also important because some
students give up writing because of syntax errors. The results of this study showed that students with higher
scores used two or more approaches together in their solutions. Therefore instructors may use the approaches
together when they solve problems depending on the nature of the problem. Of course it is impossible to apply
the approaches at every stage of the programming lessons. A proper planning is therefore needed to adopt these
approaches to the lessons. For this reason programming instructors should search the templates and should think
about analogies before lecturing.

The results have two important implications: Firstly; programming course is not a fearful course. Learning to
program can be improved through training via convenient approaches. Secondly; by learning new approaches in
the field, instructors can find new solutions to deficiencies. Finally; this study illustrates that a positive effect is
derived through the multiple usage of the three approaches. However, there is a need for conducting more
clinical interviews and gathering instructors’ perspectives in detail to identify how effective each approach is. In
future research, other data collection tools may be used to determine in depth programming process issues which
are not addressed properly; for example, efficiency, meaning, purpose, proper usage of codes, and so on.

REFERENCES
Barg, M., Fekete, A., Greening, T., Hollands, O., Kay, J., Kingston, J. H. & Crawford, K. (2000). Problem-based

learning for foundation computer science courses. Computer Science Education, 10 (2), 109-128.
Byckling, P. & Sajaniemi, J. (2006). Roles of variables and programming skills improvement. Proceedings of

the 37th SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2006), 413–417.
Bayman, P. & Mayer, R.E. (1988). Using conceptual models to teach basic computer programming. Journal of

Educational Psychology, 80, 291-298.
Carbone, A. & Sheard, J. (2002). A studio-based teaching and learning model in it: what do first year students

think? Seventh Annual Conference on Innovation and Technology in Computer Science Education,
University of Aarhus, Denmark.

De Raadt, M. (2007). A review of Australasian investigations into problem solving and the novice programmer.
Computer Science Education, 17 (3), 201 – 213.

Dunbar, K. (2001). The analogical paradox: Why analogy is so easy in naturalistic settings, yet so difficult in the
psychology laboratory. In D. Gentner, K. J. Holyoak, & B. Kokinov (Eds.), Analogy: Perspectives from
Cognitive Science. Cambridge, MA: MIT .

Dunican, E. (2002). Making the analogy: Alternative delivery techniques for first year programming courses.
Proceedings from the 14th Workshop of the Psychology of Programming Interest Group, Brunel
University, 89-99.

Gentner, D. (2000). Perspectives from Cognitive Science. MIT press Cambridge MA.
Govender, I. & Grayson, D. (2006). Learning to program and learning to teach programming: A closer look. In

E. Pearson & P. Bohman (Eds.), Proceedings of World Conference on Educational Multimedia,
Hypermedia and Telecommunications 2006 (pp. 1687-1693). Chesapeake, VA: AACE.

Hagan, D.L. & Macdonald, I.D.H. (2000). A collaborative project to improve teaching and learning in first year
programming. Australasian Journal of Engineering Education. 9 (1), 65-76.

Hui Hui, T. & Umar, I,N. (2011) Does a combination of metaphor and pairing activity help programming
performance of students with different self regulated learning level? The Turkish Online Journal of
Educational Technology, 10 (4), 121-129

Ismail, M.N., Ngah, N.A. & Umar, I.N. (2010). Instructional strategy in the teaching of computer programming:
a need assessment analyses. The Turkish Online Journal of Educational Technology, 9 (2), 125-131.

Jenkins,T.(2002).On the difficulty of learning to program. http://www.ics.ltsn.ac.uk//pub/conf2002/ jenkins.html,
Accessed January, 2011.

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
175

Linn, M., & Dalbey, J. (1989). Cognitive consequences of programming instruction. In E. Soloway & J. C.
Spohrer (Eds.), Studying the novice programmer (pp. 57-81). Hillsdale, NJ: Lawrence Erlbaum.

Ma., L., Ferguson, M. R & Wood, M. (2011) Investigating and improving the models of programming concepts
held by novice programmers. Computer Science Education, 21(1), 57–80.

Mannila, L. (2007). Novices’ Progress in Introductory Programming Courses. Informatics in Education, 6 (1),
139–152.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.-D., Laxer, C., Thomas,L.,
Utting, I. & Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of programming
skills of first-year CS students. ACM SIGCSE Bulletin, 33 (4), 125-140.

McGill, T.J. & Volet, S.E. (1997). A conceptual framework for analysing students' knowledge of programming.
Journal of Research on Computing in Education, 29 (3), 276-297.

Miliszewska, I. & Tan, G. (2007). Befriending computer programming: a proposed approach to teaching
introductory programming, Issues in Informing Science and Information Technology, 4, 277-289.

Oliver, R. (1993). The contextual model: An alternative model for teaching introductory computer programming.
Journal of Computers in Mathematics and Science Education, 12 (2), 147-167.

Proulx, V. (2000). Programming patterns and design patterns in the introductory computer science course.
SIGCSE Bulletin, 32 (1), 80-84.

Robins, A., Rountree, J. & Rountree, N. (2003). Learning and teaching programming: a review and discussion.
Computer Science Education, 13, 137 -173.

Rist, R. (1996). Teaching Eiffel as a first language. Journal of Object-Oriented Programming, 9, 30-41.
Schank,P.K., Linn,M., C. & Clancy, M.J. (1993). Supporting Pascal programming with an on-line template

library and case studies. International Journal of Man-Machine Studies, 38, 1031-1048.
Sengupta, A (2009). CFC (comment-first-coding) – a simple yet effective method for teaching programming to

information systems students. Journal of Information Systems Education, 18, 1.
Siegle, D. (2009). Developing student programming and problem-solving skills with visual basic. Gifted Child

Today, 32, 24-29.
Stein, L. A. (1999). Challenging the computational metaphor: implications for how we think. Cybernetics and

Systems, 30 (6), 1-35.
Stemler, S. E. (2004). A comparison of consensus, consistency, and measurement approaches to estimating

interrater reliability. Practical Assessment, Research & Evaluation, 9 (4).
Vujosevic-Janici, M. & Tosi’c, D. (2008). The role of programming paradigms in the first programming courses.

The Teaching of Mathematics, 9 (2), 63–83.
Weigend, M. (2006). From intuition to programme. Programming versus application. In:Mittermeir, R.T. (Ed.),

ISSEP 2006, LNCS, 4226, 117–126.
Wiedenbeck, S. & Ramalingam, V. (1999). Novice comprehension of small programs written in the procedural

and object-oriented styles. International Journal of Human-Computer Studies, 51, 71-87.
Williams, L. A. & Kessler, R. R. (2000). Effects of ‘pair-pressure’ and ‘pair-learning’ on software engineering

education, The 13th Conference on Software Engineering Education and Conference, IEEE Computer
Society, Austin, TX, 59 - 65.

Winslow, L.E. (1996). Programming pedagogy – A psychological overview. SIGCSE Bulletin, 28, 17–22.
Thuné, M. & Eckerdal,A. (2009). Variation theory applied to students’ conceptions of computer programming.

European Journal of Engineering Education, 34 (4), 339-347.

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
176

Appendix 1. Pretest questions for determining the programming knowledge

Language
Features

1. Fill in the blanks according to programming language code.
Uses
crt;
var
a,b,c,max:__________;
begin
clrscr;
write('1.number:');readln(a);
max:=a;
______('2.number:');readln(b);
if b>max then
max:=b;
write('3.number:');readln(c)
if c>max then
_____:=c;
write('Maximum:',______);
readln;
end.

Basic
Programming
Concepts

2. Please define
a)Variable, constant
b)Memory, file
c)Matrix

Simple
Problem

3. Write a code (use any programming language you know) to solve the problem.

A tree is X meter long and extends up to 2% of the length of each year. How many meters
in length will it be Y years later?

Appendix 2. Post Test (ProKT) Questions for determining programming knowledge

Phase Number Question

Q1

During program coding why do you use (16 p)

Conceptual
understanding

1.Variables with meaningful names
2.Functions
3.Iterations
4.Commenting

Q2

Find the first 200 Fibonacci numbers (24 p)
1.By using functions
2.By using procedures
3.Use none of functions of procedures
4.Explain the differences between procedure and a function
5.Explain the life cycle of parameters in your function and procedures

 6.How does your program activate a procedure and a function

Problem
solving via
programming
languages

Q3

Write a code (24 p)
1.Compute the sort of given numbers
2.Compute the combination value of given two integers (C(a,b))
3. Input a sentence and print out if it is a palindrome
Input Sentence: “Madam I'm Adam”
 Output “It is a palindrome”

Q4

Develop a program (36 p)
1. Develop a program about the movements of a limited number of shapes in
the Delphi form. Paint all the shapes in same color, and move the shapes by
pressing direction buttons. If live shape crashes other one, paint them in red
color.

 You should explain why you thought to use your way in all of the Questions.

TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1

Copyright © The Turkish Online Journal of Educational Technology
177

Appendix 3. Post Test Grading Table

Question Criteria Point

Q1.1, Q1.2,
Q1.3, Q1.4

Making meaningful explanations. 6
Giving examples. 5
Using the correct terminology in explanations. 5

Q2.1 Writing functions correctly (syntax and structure). 4
Q2.2
Q2.3

Writing correct procedure (syntax and structure).
Provide correct solution and writing correct code.

4
4

Q2.4
Q2.5
Q2.6

Meaningful explanation about difference.
Authentic explanation and giving example
Meaningful explanation on the given code

4
4
4

Q3.1, Q3.2 Q3.3

Using true syntax. 5
Using code editor correct. 5
Small size of code. 5
Effectiveness of algorithm. 5
Generating true results. 5

Q4
The criteria in 3rd question and also the below 25
Using general programming structures. 5
Using the best feasible structures. 5

