

TOJET: The Turkish Online Journal of Educational Technology – April 2010, volume 9 Issue 2

Copyright  The Turkish Online Journal of Educational Technology 125

INSTRUCTIONAL STRATEGY IN THE TEACHING OF COMPUTER
PROGRAMMING: A NEED ASSESSMENT ANALYSES

Mohd Nasir ISMAIL, 1Nor Azilah NGAH, 2Irfan Naufal UMAR

Faculty of Information Management

Universiti Teknologi Mara Cawangan Kelantan
18500 Machang, Kelantan

nasir733@kelantan.uitm.edu.my

1, 2 Center for Instructional Technology and Multimedia
Universiti Sains Malaysia 11800 Minden, Penang

azilah@usm.my, irfan@usm.my

ABSTRACT
The process of Instructional Design deals with the production of an effective, efficient and appealing
instructional material under different condition, method and outcome. Computer programming is part and parcel
of computer education. Research done in western countries has shown that programming requires problem
solving and analytical thinking skill; unfortunately these skills are found to be deficient among many students
pursuing computer programming courses. A needs assessment was done to identify whether such a problem
exists amongst Malaysian students pursuing computer programming courses in a Malaysian university. Among
others, the aim of the needs assessment is to identify the instructional problems pertaining to the current
strategies used for the teaching of programming. This paper reports and discusses the findings collected from the
interviews with five computer science lecturers from the faculty of computer science in a local university. The
result shows that there are deficiencies in knowledge, understanding and application of computer programming
among computer science students. Recommendations are given for further investigation into a more effective
strategy as an alternative in the teaching of computer programming courses.
Keywords: Computer Programming, Computer Education, Needs Assessment, Instructional Strategies,

Instructional Design

INTRODUCTION
Computer programming is part and parcel of the computer science education. It is an essential skill that must be
mastered by anyone interested in studying computer science. Normally, in teaching computer programming,
students will first be introduced to the concept of programming and data structure where they are taught on how
to analyze problems, use specific techniques to represent the problem solution and validate the solution. Next the
learners are required to convert the problem solution into a program using a specific programming language.
They are then required to test their program to verify for syntactical or logical errors to ensure that the output is
correct according to the problem requirement. Maintenance is the last process in implementation phase and it is
based on user requirement needs. Maintenance is required when there are changes in user requirements or
important components. The whole process of computer programming is shown in Figure 1.

Experience in teaching university level computer programming has proven to be a challenge to the first author.
Many students found programming to be difficult and disheartening. Since programming is the basic skill
required of computer programmers, the negative impact of these basic introductory courses may have harmful
consequences in the learners’ attitude towards the field.

TOJET: The Turkish Online Journal of Educational Technology – April 2010, volume 9 Issue 2

Copyright  The Turkish Online Journal of Educational Technology 126

Figure 1: Programming Process (Dale, Weems & Headington, 1996)

PROBLEM STATEMENT
Learners’ difficulty with computer programming is not unique to the Malaysian audience. Research done in
western countries has shown problems with regard to computer programming. The skills that have been
identified with the ability to do programming are problem solving and analytical skills (Riley, 1981; Henderson,
1986; Maheshwari, 1997b; Bonar & Soloway, 1989; Linn & Clancy, 1992). However, according to Riley (1981),
many students entering college have problem-solving skills that are “woefully inadequate”. Henderson (1986)
notes that problem solving and analytical thinking skills are students’ major weaknesses in a computer science
course and that a major theme of a computer science course should be emphasized on these skills. Programming
is said to be a study of clear thinking and problem solving in providing the students the practice of building
representations and working in a methodical manner (Maheshwari, 1997b). Maheshwari also argues that
programming fosters problem solving through a top-down approach, whereby large problems are separated into
manageable components to be solved individually and then assembled into the correct solution to the problem.
Programming encourages learners to evaluate their solutions and thinking process; this cognitive process allows
them to transfer newly acquired problem solving skills to novel problem situations. Whatever approach to
problem solving is adopted, it is recognized that it is an essential part and the first step taken in the development
of software.

In addition to problem solving and analytical skills, difficulty in programming is also attributed to the prior
knowledge and practices; errors also occur in trying to transfer a step-by-step problem-solving solution directly
from a natural language into a program (Bonar & Soloway, 1989). The differences between the natural language
and a programming language can easily cause problems. For example, some novices have understood that the
condition in a "while" loop needs to apply continuously rather than tested once per iteration. Linn & Clancy
(1992) found that “for programmers to develop competency, they need to have good problem solving skills and a
thoroughly organized knowledge of a programming language”. In problem solving phase, a solution or design is
generated to solve the problem and in the implementation phase the proposed solution is translated into a
programming language. According to Rist (1996), the main source of difficulty does not seem to be only on the
syntax or understanding of concepts, but rather on the program planning. A student can learn to explain and
understand a programming concept, e.g., what does a pointer mean, but still fails to use it appropriately in a
program. Winslow (in Soloway & Spohrer, 1989) noticed that students may know the syntax and semantics of

Analysis and
specification

General solution
(Algorithm)

 Verify
Concrete solution

(Program)

Test

Maintenance

Implementation Phase Problem Solving Phase

TOJET: The Turkish Online Journal of Educational Technology – April 2010, volume 9 Issue 2

Copyright  The Turkish Online Journal of Educational Technology 127

individual statements, but they do not know how to combine these features into valid programs. Even when they
know how to solve the problem manually, they have trouble translating it into an equivalent computer program.

Most of the introductory text books on computer programming emphasize on the study of a programming
language; the pre-programming topics such as introduction to algorithmic (pre-coding), and the running of
programs on a computer are eliminated. According to Gal-Ezer (1996), even if a lecturer has introduction to
algorithmic in mind, the emphasis in practice is always on the technicalities of a programming language, coding
and running programs on a computer. Linn and Clancy (1992) claimed that most introductory programming
language textbooks reinforce the emphasis on syntax and on the learning of individual examples rather than
encouraging students to recognize and reuse more complex patterns. McGill and Volet (1997) found that most of
the introductory computer programming courses and text books only emphasize on lower level knowledge or
known as declarative knowledge and procedural knowledge that emphasize on “know that” and “know how” that
are related to programming concepts and syntax. As a result, students fail to understand and are not able to
explain semantics actions in a program. The emphasis on low level knowledge will cause students not to
understand and master the programming syntax and constructs. Thus, learners are not able to apply correct rules
of syntax during programming and are not able to use semantic knowledge of programming in writing program
to solve novel problems.

Most programming courses are taught using the traditional approaches including a blend of lectures, reading and
practical sessions (Gray, Boyle & Smith, 1998). The environments for these types of approaches will only
produce students who are passive information receivers, allow minimal interaction between teacher and students
especially when a large group of students is involved. Gage and Berliner (1992) also argued that this type of
lecturing is not appropriate if specific goals and objectives need to be addressed, need long period of information
retention, the learning materials are complex and abstracts, students participation in class are essential to achieve
learning objectives and higher level of cognitive objectives (analysis, synthesis and evaluation) are the purpose
of the instruction.

Dalton and Goodrum (1991) have suggested that computer programming and problem solving strategy
instruction, when used together may provide an effective means of teaching transferable problem solving skills.
Maheshwari (1997a) also suggested that programming lessons should employ systematically designed direct
instruction activities, rich in feedback and practice opportunities. Programming activities should be designed to
encourage the application of problem solving strategies such as planning, simplification and modeling. She also
stated that lessons should quickly develop a rudimentary mastery of language syntax and move quickly to
produce application and problem solving. In other words, teaching programming should be interesting,
motivating and stimulating for both students and lecturers.

The first author’s experience as a lecturer in computer science field has shown that students need to acquire
reasoning, analytical thinking and problem solving skills for analyzing problem before they learn how to use and
apply problem representation tools and computer programming languages. The students need to understand how
to interpret the given problem before they can represent the correct solution and effectively use specific tools or
techniques. The later skills can be acquired by doing a lot of practices in problem solving that involved planning,
logical thinking and reasoning strategies. However, mastery in the reasoning and problem solving skills does not
necessary mean that students are able to write good computer program as writing programming languages
requires the mastering of the syntax and functions of the specific programming languages. Mastering of these
elements require the students to be actively engaged in practical exercises in writing program by using correct
syntax and constructs.

Students usually react passively during lecturing and tutorial session and this makes assessment of student’s
mental understanding difficult. At the same time, they believe that computer programming skill is complex and
difficult to be acquired and this could hinder them from asking questions for clarification. Usually, students who
are able to acquire the programming skill are those who are highly motivated and interested in exploring the
programming problems. They are usually actively involved in class and always seek help and discuss any
problems relating to computer programming with their lecturers and colleagues. Table 1 shows the problems
identified in the literature concerning problems in computer programming.

TOJET: The Turkish Online Journal of Educational Technology – April 2010, volume 9 Issue 2

Copyright  The Turkish Online Journal of Educational Technology 128

Table 1: Problems in computer programming as identified in the literature

 Problem Solving Phase Implementation Phase
Analysis General Solution Detail Solution

• Lack of problem-solving skills
• Lack of analytical thinking skills
• Lack of logical and reasoning

skills
• Lack of programming planning
• Lack of programming

conceptual understanding
• Lack of algorithmic skills

• Inefficient tools used in
representing problem solution

• Do not understand and unable
to explain semantics actions in
a program

• Ineffective design and testing
problem solution

• Do not understand and master
the programming syntax and
functions

• Unable to apply correct rules
of syntax when programming

• Unable to use semantic
knowledge of programming to
write program

• Ineffective code and testing
program to solve novel
problem

OBJECTIVE
The main aim of this research is to identify the problems in computer programming education in Malaysia. A
need assessment was conducted to identify problems relating to teaching and learning programming and finding
possible solutions to this problem. The paper will present the result of this need assessment.

METHODOLOGY
Participants
The needs assessment was done by collecting data from interviews with five expert lecturers in computer science
field at a local university. An interview protocol to elicit information on the problem under discussion was
created and used as a guideline during the interview sessions. The participation was voluntary in nature and each
interview session was around an hour to two hours.

Five university lecturers participated in the study. The selection of the participants is based on year of experience
in teaching computer science programming courses. Two of them are doctorate and the others are master degree
holders. Four of the participants have been teaching for more than ten years; meanwhile, the other one has seven
years of teaching programming with vast experiences in software engineering, managing a software development
company involved in developing commercial computer application systems. The lecturers are experienced in
teaching various types of programming languages and paradigms such as C language for structured
programming, C++ for object-oriented programming and Prolog and LISP for logic and artificial intelligence
programming language at both the undergraduate and graduate levels. Two of the participants are supervising
doctoral students at the university. They are also actively involved in research projects and consultations
regarding software engineering, artificial intelligence, parallel processing et cetera.

Interview Protocol
An interview protocol was developed to elicit information concerning the lecturers’ perception on the
importance of students’ understanding of programming concepts, problems and causes of problems in learning
programming. In addition to identifying the problems faced by students in computer programming courses, the
expert participants were also asked to talk about the solutions, methods and strategies they used as suggestions to
their students and used by them in overcoming some of the problems identified.

FINDINGS AND DISCUSSION
In this section, the findings from the needs assessment are discussed. Basically, the four main problems were
identified by the expert participants. A summary of the problems is shown in Table 2 and the following
discussion will be based on these four main problems, solutions to some of the problems identified by the experts
and recommendation by authors on some research possibilities as the solutions for some of these problems.

Problem Type I: Lack of Skills in Analyzing Problems
All the five experts interviewed agree that students’ understanding of problem solving concepts in a
programming course is essential for them to learn programming languages. They said that the lack of
understanding of the programming concepts at most basic problem solving level will cause difficulty in the
students’ further understanding of programming syntax and functions. The experts believe that most students
take the skills in problem solving for granted and fail to identify their programming weaknesses at this level.
However, the experts disagree on the reasons behind the lack of these skills in this area.

TOJET: The Turkish Online Journal of Educational Technology – April 2010, volume 9 Issue 2

Copyright  The Turkish Online Journal of Educational Technology 129

Table 2: Problems identified in the needs assessment process
Problem Type
I. Lack of skills in analyzing problems
II. Ineffective use of problem representation techniques for problem solving
III. Ineffective use of teaching strategies for problem solving and coding
IV. Do not understand and master the programming syntax and constructs

One expert believes that the students should be introduced to a course in discrete mathematics and logic before
taking any course in programming. In other words, the students do not have the prerequisite skills to take
programming courses. Three of the experts said that the students were not actually taught and exposed to proper
algorithm solution as the goals for most programming courses are for the students to be able to write programs.
Understanding the programming concepts and semantics behind the program were assumed to be acquired by
doing the programming exercises.

Suggestions by the experts to solve the problems at this phase of programming include the need for the students
to acquire problem solving, planning, discrete mathematics, logic, and creative thinking skills before they learn
programming concepts.

Problem Type II: Ineffective Use of Problem Representation Techniques for Problem Solving
According to the expert participants, at the basic level of programming (problem solving phase), two-way
discussion approach is used to discuss the definition statement of programming problem. After defining the
problem statement, problem solution are usually designed using algorithm representation techniques. Techniques
such as pseudo code and flow chart are used to present the algorithm during problem solving phase. Both
techniques are the accepted standard or conventional techniques and are used to explain the concept of
programming in most Malaysian universities. The same techniques are also being used in the computer
programming books written by the authors from western countries. Both techniques are based on structured
problem solving method whereby a problem is presented in a form of procedural statements similar to the actual
programming code (pseudo code) and presented in a form of control flow or data flow process (flow chart). At
this phase, the problem appears to be similar to the type of programming codes that are being taught to the
students.

All expert participants agreed that the conventional techniques used to represent the algorithm have created some
problems for the students, especially for those doing object-oriented programming. According to them, these
conventional techniques are more suitable for structured programming approach and can cause the students to
be confused and unable to translate the algorithm into the correct programming coding. They also agreed that the
concept of programming that is based on object oriented approach should be introduced to the students in
semester two, that is after they have already grasp the foundation on structured approach. Also, according to
them, the object oriented approach is best used to explain a problem in a form of program entity. Furthermore, at
the basic level, most of the experts interviewed agreed that concept programming that uses structured approach is
much easier to understand by the students since this is the approach human use in thinking.

Some of the solutions suggested by the experts include the use of different problem representation tools for
different types of programming. This is to say that structured programming approach should use a different
problem representation tools than object oriented approach. The instruction should also be supported by using
visualization approach that would enable the students to have a mental representation of the problem. Lastly, the
time spent for the teaching of concepts of programming should also be made longer to about 3 or 4 weeks.
Currently, the time spent for teaching the concepts of programming is only about 2 weeks.

Problem Type III: Ineffective Use of Teaching Strategies for Problem Solving and Coding
Three of the expert participants claimed that the difficulty in understanding the concept of programming and
coding is because of the ineffective teaching strategies used during problem solving and coding. These
experiences will undoubtedly influence the students’ perceptions on programming courses as difficult and
complex. One expert participant argued that factors such as lecturer using ineffective teaching strategies and
taking the matter into granted contribute to the difficulty in understanding and confused the students when they
try to apply the concept into programming code. According to this expert participant, the effective teaching
strategies should start with teaching structured or procedural type of programming language; object-oriented type
of programming language is not a good starting point to introduce the students to the basic concept of
programming. Two other expert participants believe that the main cause for the above problems is the inactive
involvement of students during programming practical session.

TOJET: The Turkish Online Journal of Educational Technology – April 2010, volume 9 Issue 2

Copyright  The Turkish Online Journal of Educational Technology 130

All the expert participants also agreed that the concept of programming should be taught to the students in a form
that support their spatial and visualization abilities as these aspects will help them to understand and visualize the
process of control and data flow in a program in a more general context. All of them agreed that techniques,
approaches and strategies used in teaching programming should be applicable to the content of programming
with different paradigms in order to help students strengthen their basic problem solving skills and be able to
plan and organize the solution by using an effective cognitive strategy. The cognitive strategy will hopefully
help them to acquire the problem solving skills that together with knowledge on the syntax of a programming
language can help them to solve novel problems.

Some of the problems suggested by the experts include doing enough practical exercises relating to real world
examples as these would allow them to apply the concept of programming correctly to solve novel problem.
Practical sessions or tutorial should also be enriched with activities, feedback and practice opportunities.

Problem Type IV: Do Not Understand and Master the Programming Syntax and Constructs
According to the experts, students need to have both the understanding of the concept of programming and the
knowledge of syntax and constructs of a specific programming language in order for them to be able to write a
good program. They added that lecturers normally give lectures on the concepts and principles of programming
along with simple examples of problems and provide students with practical exercises to build program concepts
and translate them into programs. Practical exercises are done in the computer laboratory during tutorial
sessions. For the weak students, they are urged to make appointment for consultation or create small group
remedial session to help them overcome these problems. The experts also added that practical exercises are
important and students should be active participants during these tutorial sessions and should spend time
understanding the syntax, construct, and concept of the programming languages.

In order to overcome these problems, the experts have also suggested the collaborative and cooperative group
work amongst the students. Team work allows for the use of scaffolding and coaching on how to programming
effectively thus allowing them to explain and understand the programming concept, know the syntax and
semantics of programming statements and know how to combine these features into valid computer programs.

DISCUSSION AND CONCLUSION
Analyses of the data from the needs assessment revealed some similarities between problems identified by the
expert participants and the first author’s experience in teaching similar courses. There are gaps or deficiencies in
students’ knowledge in computer programming course in each phase of the programming processes. Four main
problems were identified, including (i) the lack of skills in analyzing problems, (ii) ineffective use of problem
representation techniques for problem solving, (iii) ineffective use of teaching strategies for problem solving and
coding, and (iv) the difficulty in mastering programming syntaxes and functions.

According to McGill and Volet (1997), most introductory computer programming courses and text books
emphasize only the lower level knowledge, also known as declarative and procedural knowledge. Declarative
and procedural knowledge are types of knowledge that emphasize the knowledge of “what” and “how”
respectively. As such, these are knowledge that are related to the what and how of programming concepts and
syntax. Rist (1996) believes that the acquisition of only low level knowledge made it difficult for students to
apply a complete form of programming even though they are able to explain and understand the programming
concept. This will cause the development of inert knowledge to the students during the learning process. This is
the same observation made by Winslow (in Soloway & Spohrer, 1989) where he noticed that students may know
the syntax and semantics of individual statements, but they do not know how to combine these features into valid
programs.

Computer programming requires higher level knowledge or knowledge at the strategic or conditional level. This
is the knowledge of “when and why” which requires meta-cognitive skills which are apparently are lacking
among the students. Lack of meta-cognitive skills has been reported in several studies on computer programming
courses (Linn, 1985; Linn & Clancy, 1992; McGill & Volet, 1997; Oliver, 1993; Volet, 1991). If one were to
look at the different phases of the programming processes as shown in Table 1, even at the initial and first phase
of problem solving, analysis of the problem requires the student to be able to identify, analyze, plan and create
possible ways to put the problem into whatever programming language at hand, a task that requires the highest
cognitive dimension identified in the Revised Bloom Taxonomy (Anderson & Krahwohl, 2001). The experts’
opinion from this needs assessment concur with the literature on computer programming education in that the
critical part of the programming process starts at the analysis of the problem solving and consequently will have
an effect on the next phase of the programming sequence.

TOJET: The Turkish Online Journal of Educational Technology – April 2010, volume 9 Issue 2

Copyright  The Turkish Online Journal of Educational Technology 131

Is there a teaching or learning strategy that can be used to help lessen the burden at this stage? Is there a need for
a specific kind of technique to represent the individual’s knowledge and understanding regarding computer
programming problem? Are pseudo codes and flowcharts adequate in helping the students to see the problem to
be programmed? What are some of the visual representations other than the flowchart that can be used at this
stage? These are some of the questions that need to be answered and further research need to be done to find the
solution. Otherwise our computer programmers in the future will not have the skills necessary to create new
applications, merely users of programs created by others. In the era of digital technology and knowledge
workers, these are inadequate skills that need to be addressed in the field of Instructional Technology.

REFERENCES
Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching and assessing: A

revision of Bloom's Taxonomy of educational objectives: Complete edition, New York: Longman.
Bonar, J. & Soloway, E. (1989). Pre-programming knowledge: A major source of misconceptions in novice

programmers. In Soloway & Spohrer (1989), Studying the Novice Programmer (pp. 325-354), Mahwah,
NJ: Erlbaum.

Dale, N. et.al. (1996). Programming and Problem Solving with C++. Boston: Jones and Bartlett Publishers.
Dalton, D. W., & Goodrum, D. A. (1991). The effects of computer programming on problem-solving skills and

attitudes. Journal of Educational Computing Research, 7(4), 483-506.
Gage, N. & Berliner, D. C. (1992). Educational Psychology. Boston: Houghton Miffin.
Gal-Ezer, J. (1996). A pre-programming introduction to algorithmics. Journal of Mathematics and Computer

Education. 30(1), 61-69.
Gray, J. et.al. (1998). Proceedings from ItiCSE ’98: Integrating Technology into Computer Science Education,

pp. 94-97, New York: ACM Press.
Henderson, P. B. (1986). Proceedings of the 17th SIGCSE ’86: Technical symposium on Computer Science

Education, pp. 257-263, New York: ACM Press.
Linn, M. C. (1985). The cognitive consequences of programming instruction in classrooms. Educational

Researchers, 14(5), 14-16 & 25-29.
Linn M. C. & Clancy M. J. (1992). The case for case studies of programming problems. Communications of the

ACM, 35(3), 121-132.
Maheshwari, P. (1997a). Improving the learning environment in first-year programming: Integrating lectures,

tutorials, and laboratories. Journal of Computers in Mathematics and Science Teaching, 16(1), 111-131.
Maheshwari, P. (1997b). Proceedings from ACM International Conference Proceeding Series ’97: Proceedings

of the second Australasian Conference on Computer Science Education, pp. 32-39, New York: ACM
Press.

McGill, T. J. & Volet, S.E. (1997). A conceptual framework for analyzing students’ knowledge of programming.
Journal of research on Computing in Education. 29(3), 276.

Oliver, R. (1993). The contextual model: An alternative model for teaching introductory computer programming.
Journal of Computers in Mathematics and Science Education, 12(2), 147-167.

Riley, D. (1981). Proceedings from Technical Symposium on Computer Science Education ’81: Proceedings of
the twelfth SIGCSE Technical Symposium on Computer Science Education, pp. 244-251, New York:
ACM Press.

Rist, R. (1996). Teaching Eiffel as a first language. Journal of Object-Oriented Programming, 9, 30-41.
Soloway, E. & Spohrer, J. (1989). Studying the Novice Programmer. Hillsdale, New Jersey: Lawrence Erlbaum

Associates.
Volet, S. E. (1991). Modeling and coaching of relevant metacognitive strategies for enhancing university

students’ learning. Learning and Instruction, 1, 319-336.

